

sation of hypothyroidism. The following evidence supports a neoplastic TSH origin: (a) an elevated α subunit level [1]; (b) residual intrasphenoidal tumour; (c) absence of 24 h TSH cycle.

Cases of TSH-secreting adenoma, in which bromocriptine or octreotide produce a persistent decrease in TSH and α subunit secretion, have been reported [2-7]. The octreotide escape phenomenon has been reported in cases with ectopic adrenocorticotrophic hormone [8]. In our case, the escape phenomenon could be due to the disappearance of sensitive receptors present on the TSH-secreting adenoma [9,10] or to the presence of different cell clones with a different sensitivity to inhibition by somatostatin and/or bromocriptine.

1. Mixon AJ, Friedman TC, Katz DA, et al. Thyrotropin-secreting pituitary carcinoma. *J Clin Endocrinol Metab* 1993, **76**, 524-528.
2. Allyn RG, Berenstein R, Chynn KJ, et al. Reduction in size of a thyrotropin and gonadotropin secreting pituitary adenoma treated with octreotide acetate (somatostatin analog). *J Clin Endocrinol Metab* 1992, **74**, 690-694.
3. Corni RJ, Gesundheit N, et al. Response of thyrotropin-secreting pituitary adenomas to a long acting somatostatin analogue. *New Engl J Med* 1987, **317**, 12-17.
4. Connell S, McCruden DC, Davies DL, et al. Bromocriptine for inappropriate thyrotropin secretion. *Ann Intern Med* 1982, **96**, 251-252.
5. De Rosa G, Corsello SM, Della Casa S, et al. Effect of somatostatin on the pituitary-thyroid axis. *Ann Endocrinol* 1983, **44**, 355-360.
6. Thorner MO, Vause ML, Horvath E, et al. The anterior pituitary. In Wilson, Foster, Williams, eds. *Textbook of Endocrinology*, 8th edition. Saunders Company, 1992, **6**, 286-288.
7. Weintraub BD, Gershengorn MC, Kourides IA, et al. Inappropriate secretion of thyroid stimulating hormone. *Ann Intern Med* 1981, **95**, 339-351.
8. Bertagna X, Faurot-Coune C, Escouralte H, et al. Suppression of ectopic adrenocorticotropin secretion by the long-acting somatostatin analog octreotide. *J Clin Endocrinol Metab* 1989, **68**, 988-991.
9. Bertherat J, Brue T, Enjalbert A, et al. Somatostatin receptors on thyrotropin secreting pituitary adenomas: comparison with inhibitory effects of octreotide upon *in vivo* and *in vitro* hormonal secretion. *J Clin Endocrinol Metab* 1992, **75**, 540-546.
10. Lamberts S, Tilanus HW, Klooswijk AJ, et al. Successful treatment with SMS 201-995 of Cushing's syndrome caused by ectopic adrenocorticotropin secretion from a metastatic gastrin-secreting pancreatic islet cell carcinoma. *J Clin Endocrinol Metab* 1988, **65**, 1080-1083.

European Journal of Cancer Vol. 30A, No. 2, pp. 248-249, 1994.

Copyright © 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0959-8049/94 \$6.00 + 0.00

Mitoxantrone, 5-Fluorouracil and Levo-leucovorin as Salvage Treatment in Advanced Breast Cancer Patients

Serafina Mammoliti, Laura Merlini, Cinzia Caroti and Luigi Gallo

THE USE of combination chemotherapy in the treatment of advanced breast cancer produces objective responses in 60-80% of patients, with complete remission in fewer than 30% [1].

Correspondence to S. Mammoliti.

The authors are at the Servizio di Oncologia Medica, E.O.V. Ospedali Galliera, C.so Mentana 10 - Genova, Italy.

Revised 5 Aug. 1993; accepted 11 Oct. 1993.

The probability of obtaining objective responses with second-line treatment ranges from 10 to 35% [2]. At present, optimal therapy for most patients consists of maximising response rate while limiting drug-induced toxicity.

We report the results of a phase II study with mitoxantrone, fluorouracil and leucovorin in 49 patients with metastatic breast carcinoma [3-6].

Eligibility criteria included ECOG performance status ≤ 2 , adequate white blood cell and platelet cell count, adequate cardiac, renal and hepatic function and expected survival of longer than 12 weeks. Chemotherapy consisted of mitoxantrone 10 mg/m² intravenously (i.v.) on day 1, levo-leucovorin 250 mg/m² administered over 2 h and 5-fluorouracil 500 mg/m² i.v. push after the first hour of leucovorin infusion on days 15 and 16, i.e. the period of presumed neoplastic repopulation. This combination could emphasise the potential additive effects of the agents while avoiding overlapping toxicities. Courses were repeated every 28 days. Informed written consent was obtained from all patients.

Patients who received at least three cycles of treatment were evaluable for response. All patients were analysed for toxicity. 48 patients completed three or more courses of treatment and were assessable for response and toxicity. The remaining patient received only two cycles of therapy and refused further treatment; this patient was not evaluable for response. Patients' characteristics are shown in Table 1; it is noteworthy that 22/49 (44.9%) patients were aged more than 65 years. 20 patients received prior adjuvant therapy; 23 patients received mitoxantrone, leucovorin and 5-fluorouracil as the front-line regimen while 25 were pretreated with antracycline-based chemotherapy for metastatic disease.

A median number of six courses (range 2-11) were administered. Objective responses were observed in 18/48 patients (38%), in particular, 1 patient with soft tissue metastases achieved complete response and she is currently disease-free; 22/48 patients (46%) had stable disease while 8 (16%) progressed. Response rate was analysed according to prior treatment with or without anthracyclines. No difference was observed between the two groups.

Median response duration was 8 months (range 2-28); median survival was 13 months (range 3-33); to date, 23 patients have died, 1 of these without evidence of disease. The regimen was well tolerated with only 1 patient presenting with grade III leucopenia who did not require hospitalisation. No grade III-IV non-haematological toxicities were recorded.

Our results are comparable to the response rate reported in the literature with second-line regimens [2], although Hainsworth and Jones [7, 8], using the same drugs with different schedules, observed better results. Perhaps patient selection may explain the difference in response rates achieved in these trials. The present study suggests the use of this safe and well-tolerated combination as second-line treatment in metastatic breast carcinoma.

Table 1. Patients' characteristics

No. of patients	49
Median age (years)	63 (range 42-79)
Median performance status	0 (range 0-2)
Site of metastases	
Soft tissue	25
Bone	31
Viscera	29

5-Fluorouracil/doxorubicin/cyclophosphamide remains the front-line therapy of choice, but mitoxantrone, leucovorin and fluorouracil could represent an alternative combination in the elder subset of patients with poor performance status.

1. Canellos GP, De Vita VT, Gold GL, *et al.* Combination chemotherapy for advanced breast cancer: response and effect on survival. *Ann Intern Med* 1976, **84**, 389-392.
2. Falkson G, Gelman RS, Tormey DC, *et al.* The Eastern Cooperative Oncology Group experience with cyclophosphamide, adriamycin, and 5-fluorouracil (CAF) in patients with metastatic breast cancer. *Cancer* 1985, **56**, 219-224.
3. Swain SM, Lippman ME, Egan EF, *et al.* 5-Fluorouracil and high dose leucovorin in previously treated patients with metastatic breast cancer. *J Clin Oncol* 1989, **7**, 890-899.
4. Zaniboni A. The emerging role of 5-fluorouracil and leucovorin in the treatment of advanced breast cancer. A review. *J Chemother* 1989, **1**, 330-337.
5. Henderson IC, Allegra JC, Woodcock T, *et al.* Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. *J Clin Oncol* 1989, **7**, 560-571.
6. Bennett JM, Muss HB, Doroshow JH, *et al.* A randomized multicenter trial comparing mitoxantrone, cyclophosphamide, and fluorouracil with doxorubicin, cyclophosphamide, and fluorouracil in the therapy of metastatic breast cancer. *J Clin Oncol* 1988, **6**, 1611-1620.
7. Hainsworth JD, Andrews MB, Johnson DH, *et al.* Mitoxantrone, fluorouracil and high dose leucovorin: an effective, well-tolerated regimen for metastatic breast cancer. *J Clin Oncol* 1991, **7**, 1731-1735.
8. Jones ES, Mennel RG, Brooks B, *et al.* Phase II study of mitoxantrone, leucovorin and infusional fluorouracil for treatment of metastatic breast cancer. *J Clin Oncol* 1991, **9**, 1736-1739.